

# ДТХ-RS

# Датчики температуры



**©**[H[

# Руководство по эксплуатации

КУВФ.405210.005РЭ

11.2024 версия 1.20

# Содержание

| Предупреждающие сообщения                              | 3  |
|--------------------------------------------------------|----|
| Используемые аббревиатуры                              | 4  |
| Введение                                               | 5  |
| 1 Назначение                                           | 7  |
| 2 Технические характеристики и условия эксплуатации    | 8  |
| 2.1 Технические характеристики                         |    |
| 2.2 Метрологические характеристики                     |    |
| 2.3 Условия эксплуатации                               | 11 |
| 3 Меры безопасности                                    | 12 |
| 4 Устройство и работа                                  | 13 |
| 5 Использование по назначению                          | 14 |
| 5.1 Эксплуатационные ограничения                       | 14 |
| 5.2 Подготовка к использованию                         |    |
| 5.3 Монтаж                                             |    |
| 5.4 Подключение                                        |    |
| 6 Работа датчика в сети RS-485                         |    |
| 7 Возможные неисправности и методы их устранения       | 21 |
| 8 Техническое обслуживание                             | 22 |
| 9 Упаковка и консервация                               | 23 |
| 10 Транспортирование и хранение                        | 23 |
| 11 Утилизация                                          | 23 |
| 12 Маркировка                                          | 24 |
| 13 Комплектность                                       |    |
| 14 Гарантийные обязательства                           | 24 |
| ПРИЛОЖЕНИЕ А. Конструктивные исполнения ДТП-RS ДТП-RS  |    |
| ПРИЛОЖЕНИЕ Б. Конструктивные исполнения ДТС-RS ДТС-RS  |    |
| ПРИЛОЖЕНИЕ В. Конструктивные исполнения коммутационных | 33 |

### Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:



#### ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.



#### ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.



#### ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.



#### ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

#### Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное Объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

# Используемые аббревиатуры

**ИП** – источник питания.

**КТМС** – кабель термопарный с минеральной изоляцией в стальной оболочке.

**НП** – нормирующий преобразователь.

**НСХ** – номинальная статическая характеристика.

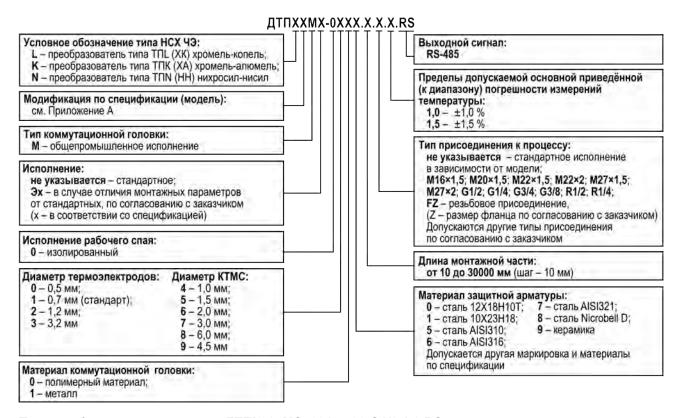
ТП – преобразователь термоэлектрический (термопара).

ТС – термопреобразователь сопротивления.

**ЧЭ** – чувствительный элемент.

### Введение

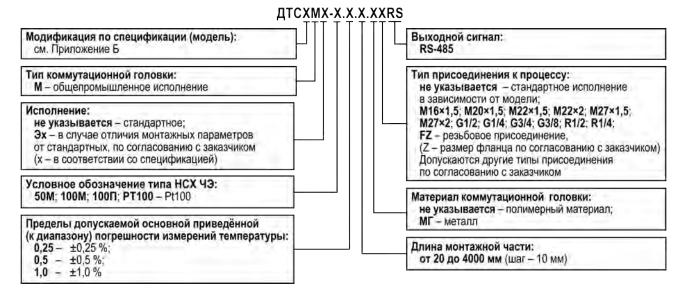
Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, монтажом, подключением, настройкой, эксплуатацией и техническим обслуживанием датчиков температуры ДТХ-RS: ДТС-RS и ДТП-RS (далее по тексту – датчик).


Датчики температуры ДТХ-RS выпускаются в соответствии с ТУ 26.51.51-001-46526536-2019.

Регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений: 89616-23.

Датчики изготавливаются в различных модификациях, различающихся по метрологическим и техническим характеристикам, а также по конструкции защитной арматуры и коммутационных головок.

Структура и расшифровка условных обозначений датчиков в зависимости от типа чувствительного элемента (ЧЭ) приведена ниже.


#### Датчики с ЧЭ типа «термоэлектрический преобразователь (термопара)»:



Пример обозначения при заказе: **ДТПК285M3-0915.500.G1/2.1,0.RS.** 

Приведенное условное обозначение указывает, что изготовлению и поставке подлежит Датчик температуры с выходным сигналом RS-485 модели 285, изготовленный по специальному заказу, с изолированным чувствительным элементом типа термопара хромель/алюмель из термопарного кабеля диаметром 4,5 мм, с металлической коммутационной головкой, с защитной арматурой из стали AISI310, монтажной частью длиной 500 мм, пределами допускаемой приведенной (к диапазону) погрешности  $\pm 1,0$ % с присоединительной резьбой G1/2.

#### Датчики с ЧЭ типа «термопреобразователь сопротивления»:



Пример обозначения при заказе: ДТC035M-PT100.0,5.200.RS.

Приведенное условное обозначение указывает, что изготовлению и поставке подлежит Датчик температуры с выходным сигналом RS-485 модели 035, с чувствительным элементом Pt100, с пределами допускаемой приведенной (к диапазону) погрешности ±0,5 %, с длиной монтажной части 200 мм, с коммутационной головкой из полимерного материала.

Подробная информация об исполнениях датчиков представлена на официальном сайте компании: www.owen.ru.

# 1 Назначение

Датчики температуры ДТХ-RS предназначены для непрерывных измерений температуры неагрессивных к материалу защитной арматуры жидких, паро- и газообразных сред, сыпучих материалов, а также твердых тел, и преобразований измеренных значений температуры в цифровой сигнал для передачи данных по стандартному цифровому протоколу связи RS-485 Modbus RTU.

# 2 Технические характеристики и условия эксплуатации

# 2.1 Технические характеристики

Технические характеристики датчиков приведены в таблице ниже.

Таблица 2.1 – Основные технические характеристики датчиков

| Наименование характеристики                                                                                                                                                                                                                                         | Значение                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Электрическое сопротивление изоляции при температуре от $+10$ °C до $+30$ °C (для датчиков с HCX ЧЭ типов L, K, N) и при температуре от $+15$ °C до $+35$ °C (для датчиков с HCX ЧЭ типов 50M, 100M, Pt100, 100П) и относительной влажности от 30 до 95 %, не менее | 100 МОм                                           |
| Показатель термической инерции, не более<br>- для датчиков с ЧЭ типа ТП                                                                                                                                                                                             | 120 c                                             |
| - для датчиков с ЧЭ типа TC                                                                                                                                                                                                                                         | 30 c                                              |
| Напряжение питания постоянного тока*                                                                                                                                                                                                                                | от 10 до 42 В<br>(24 В – номинальное<br>значение) |
| Диаметр защитной арматуры                                                                                                                                                                                                                                           | от 1 до 40 мм                                     |
| Длина монтажной части: - для датчиков с ЧЭ типа ТС - для датчиков с ЧЭ типа ТП                                                                                                                                                                                      | от 20 до 4000 мм<br>от 10 до 30000 мм             |
| Степень защиты (по ГОСТ 14254-2015):                                                                                                                                                                                                                                |                                                   |
| – корпус с коммутационной головкой из полимерного материала;                                                                                                                                                                                                        | IP54                                              |
| – корпус с металлической коммутационной головкой и ДТС125M                                                                                                                                                                                                          | IP65                                              |
| Номинальное давление защитной арматуры, не более:                                                                                                                                                                                                                   |                                                   |
| – защитная арматура из стали с диаметром погружной части до 6 мм;                                                                                                                                                                                                   | 0,4 МПа                                           |
| – защитная арматура из стали с диаметром погружной части 6 мм;                                                                                                                                                                                                      | 0,6 МПа                                           |
| – защитная арматура из стали с диаметром погружной части от 8 до 12 мм;                                                                                                                                                                                             | 10 МПа                                            |
| – защитная арматура из стали с диаметром погружной части 12 мм и более                                                                                                                                                                                              | 16 МПа                                            |
| Средняя наработка на отказ (в зависимости от типа ЧЭ и температуры применения), не менее:                                                                                                                                                                           |                                                   |
| - для датчиков с ЧЭ на основе платиновых ТС<br>- для датчиков с ЧЭ на основе медных ТС                                                                                                                                                                              | 40000 ч<br>15000 ч                                |
| - для датчиков с ЧЭ типа ТП на основе кабельной термопары (КТМС) с НСХ типа «N»:                                                                                                                                                                                    |                                                   |
| – от -40 °C до +600 °C включ.                                                                                                                                                                                                                                       | 40000 ч                                           |
| – св. +600 °C до +900 °C включ.                                                                                                                                                                                                                                     | 16000 ч                                           |
| – св. +900 °C до +1100 °C включ.                                                                                                                                                                                                                                    | 8000 ч                                            |
| – св. +1100 °C до +1250 °C                                                                                                                                                                                                                                          | не нормируется                                    |
| - для датчиков с ЧЭ типа ТП на основе кабельной термопары (КТМС) с НСХ типа «К»:                                                                                                                                                                                    |                                                   |
| – от -40 °C до +600 °C включ.                                                                                                                                                                                                                                       | 40000 ч                                           |
| – св. +600 °C до +900 °C включ.                                                                                                                                                                                                                                     | 16000 ч                                           |
| - для датчиков с ЧЭ типа ТП на основе кабельной термопары (КТМС) с НСХ типа «L»:                                                                                                                                                                                    |                                                   |
| – от -40 °C до +600 °C включ.                                                                                                                                                                                                                                       | 40000 ч                                           |
| <ul> <li>для датчиков с ЧЭ типа ТП на основе термоэлектродной проволоки:</li> </ul>                                                                                                                                                                                 |                                                   |
|                                                                                                                                                                                                                                                                     | 16000 ч                                           |
| – от -40 °C до +900 °C включ.                                                                                                                                                                                                                                       | 10000 4                                           |
| – от -40 °C до +900 °C включ.<br>– св. +900 °C до + 1100 °C включ.                                                                                                                                                                                                  | 8000 <sup>4</sup>                                 |

### Продолжение таблицы 2.1

| Наименование характеристики                                                      | Значение       |
|----------------------------------------------------------------------------------|----------------|
| Средний срок службы (в зависимости от типа ЧЭ и температуры                      |                |
| применения), не менее:                                                           |                |
| - для датчиков с ЧЭ типа TC                                                      | 10 лет         |
| - для датчиков с ЧЭ типа ТП на основе кабельной термопары (КТМС) с НСХ типа «N»: |                |
| – от -40 °C до +600 °C включ.                                                    | 10 лет         |
| – св. +600 °C до +900 °C включ.                                                  | 4 года         |
| – св. +900 °C до +1100 °C включ.                                                 | 2 года         |
| – св. +1100 °C до +1300 °C                                                       | не нормируется |
| - для датчиков с ЧЭ типа ТП на основе кабельной термопары (КТМС) с НСХ типа «К»: |                |
| – от -40 °C до +600 °C включ.                                                    | 10 лет         |
| – св. +600 °C до +900 °C включ.                                                  | 4 года         |
| - для датчиков с ЧЭ типа ТП на основе кабельной термопары (КТМС) с НСХ типа «L»: |                |
| – от -40 °C до +600 °C включ.                                                    | 10 лет         |
| - для датчиков с ЧЭ типа ТП на основе термоэлектродной проволоки:                |                |
| - от -40 °C до +900 °C включ.                                                    | 4 года         |
| - св. +900 °C до +1100 °C включ.                                                 | 2 года         |
| - св. +1100 °C до +1300 °C                                                       | не нормируется |

# $\triangle$

### ВНИМАНИЕ

\* Не допускается подключать датчик к распределительным сетям питания постоянного тока. Рекомендуется использовать локальный источник питания.

### 2.2 Метрологические характеристики

Метрологические характеристики датчиков приведены в таблице ниже.

Таблица 2.2 – Метрологические характеристики датчиков

| Условное<br>обозначение типа<br>НСХ ЧЭ        | Диапазон<br>измерений<br>температуры, °С | Пределы допускаемой основной приведенной (к диапазону измерений) погрешности измерений (ү), % (¹) | Пределы допускаемой дополнительной приведенной (к диапазону измерений) погрешности измерений, вызванной изменением температуры окружающей среды от нормальных условий на каждые 10 °C изменения, % |
|-----------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | Датчики с ЧЭ тиг                         | 1а ТП по ГОСТ Р 8.585-2001                                                                        |                                                                                                                                                                                                    |
| L                                             | от -40 до +600                           |                                                                                                   |                                                                                                                                                                                                    |
| I/C                                           | от -40 до +800                           |                                                                                                   |                                                                                                                                                                                                    |
| К                                             | от -40 до +900                           | ±1,0; ±1,5                                                                                        | 0,2·γ                                                                                                                                                                                              |
| N                                             | от -40 до +1250                          | -                                                                                                 |                                                                                                                                                                                                    |
|                                               | Датчики с ЧЭ ти                          | па ТС по ГОСТ 6651-2009                                                                           |                                                                                                                                                                                                    |
| 50M (α=0,00428 °C-1),                         | от -50 до +180                           | ±0,5; ±1,0                                                                                        |                                                                                                                                                                                                    |
| 100M (α=0,00428 °C-1)                         | от -40 до +85                            | ±1,0                                                                                              |                                                                                                                                                                                                    |
| Dt100 (~=0 00395 °C 1)                        | от -40 до +85                            | ±1,0                                                                                              | 0,2·γ                                                                                                                                                                                              |
| Pt100 (α=0,00385 °C-1), 100Π (α=0,00391 °C-1) | от -50 до +300 (2)                       | ±0,25                                                                                             |                                                                                                                                                                                                    |
| 10011 (u=0,00091 O ·)                         | от -50 до +500 (2)                       | ±0,5; ±1,0                                                                                        |                                                                                                                                                                                                    |

# $\lceil \mathbf{i} \rceil$

#### ПРИМЕЧАНИЕ

(1) Конкретное значение пределов допускаемой основной приведенной (к диапазону измерения) погрешности измерений температуры приведено в паспорте на датчик.

<sup>(2)</sup> Указаны предельные значения диапазонов измерений. Диапазоны измерений датчиков могут отличаться от предельных значений, при этом интервал диапазона измерений (разница верхнего и нижнего пределов) должен быть не менее 150 °C. Конкретный диапазон измерений указан в паспорте на датчики.

### 2.3 Условия эксплуатации

Рабочие условия эксплуатации узлов коммутации:

- открытый воздух или взрывобезопасные помещения с нерегулируемыми климатическими условиями и (или) навесы, помещения с неагрессивными для материала датчиков парами и газами;
- температура окружающей среды от минус 40 до плюс 85°C;
- относительная влажность от 30 до 95 % без конденсации влаги.

Нормальные условия эксплуатации узлов коммутации:

- открытый воздух или взрывобезопасные помещения с неагрессивным для материала датчиков парами и газами;
- температура воздуха от плюс 10 до плюс 30 °C;
- относительная влажность от 30 до 95 % без конденсации влаги.

По устойчивости к воздействию синусоидальных вибраций по ГОСТ Р 52931-2008 датчик без монтажных элементов (в гладкой защитной арматуре) соответствуют группе V2, в керамической защитной арматуре – группе L3, остальные – группе N2.

По устойчивости к воздействию электромагнитных помех датчик соответствует требованиям ГОСТ 30804.6.2-2013.

По уровню излучения радиопомех датчик соответствует требованиям ГОСТ 30804.6.3-2013.

# 3 Меры безопасности



#### ВНИМАНИЕ

Любые подключения к датчику и работы по его техническому обслуживанию следует производить только при отключенном от электропитания оборудовании и отсутствии давления измеряемой среды.

По способу защиты обслуживающего персонала от поражения электрическим током датчик соответствует классу III по ГОСТ 12.2.007.0-75.

Во время подключения, эксплуатации и поверки датчика следует соблюдать требования следующих документов:

- ΓΟCT IEC 61010-1-2014;
- FOCT 12.3.019-80;
- «Правила технической эксплуатации электроустановок потребителей электрической энергии»;
- «Правила охраны труда при эксплуатации электроустановок».

Монтаж датчика, подключение и проверка его технического состояния во время эксплуатации должны проводиться в соответствии с техническим описанием датчика и инструкциями на оборудование, в комплекте с которыми он работает.

Не допускается попадание влаги на контакты выходных разъемов и внутренние элементы датчика. Запрещается использование датчика при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

# 4 Устройство и работа

Датчик состоит из (см. рисунок 4.1):

- ЧЭ, помещенного в защитную арматуру;
- встроенного в коммутационную головку НП, предназначенного для преобразования измеренной температуры в цифровой сигнал RS-485.
- Коммутационная головка состоит из корпуса, крышки и кабельного ввода.

Подключение внешних линий связи осуществляется к винтовым клеммам НП внутри корпуса датчика (см. подраздел 5.4).



Рисунок 4.1 – Устройство датчика

Коммутационная головка может быть из полимерного материала или металлической (см. Приложение B ).

ЧЭ в зависимости от диапазона измеряемых температур может быть выполнен в виде ТС или ТП.

#### 5 Использование по назначению

#### 5.1 Эксплуатационные ограничения

Монтаж и эксплуатацию датчика следует выполнять с соблюдением мер безопасности, приведенных в разделе 3.

Климатические факторы, температура, физические свойства и химическая активность измеряемой среды, давление должны соответствовать техническим характеристикам датчика и стойкости материалов защитной арматуры к воздействию измеряемой среды.

Датчик монтируется в положении, удобном для эксплуатации и обслуживания. Перед монтажом следует осмотреть датчик, проконтролировать отсутствие видимых механических повреждений.



#### **ВНИМАНИЕ**

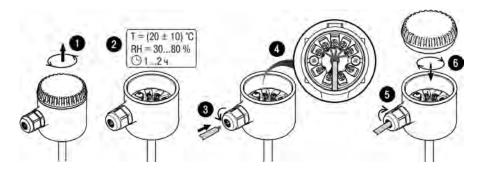
Запрещается использовать датчик с повреждениями!

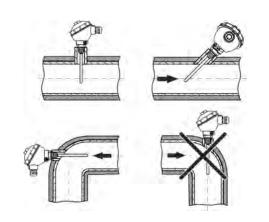
Во время эксплуатации датчик не должен подвергаться резкому нагреву или охлаждению, а также механическим ударам.

#### 5.2 Подготовка к использованию

Перед монтажом датчика следует распаковать его, проверить комплектность и подготовить к работе, выполнив следующие действия (см. рисунок 5.1):

- 1. Снять крышку с коммутационной головки.
- 2. Выдержать датчик при температуре от плюс 10 до плюс 30 ° С и относительной влажности от 30 до 80 % в течение времени от одного до двух часов. Проверить отсутствие механических повреждений датчика и целостность измерительной цепи. При наличии повреждений или отсутствии целостности цепи датчик заменить новым.
- 3. Ослабить гайку кабельного ввода, ввести кабель внутрь корпуса через кабельный ввод.
- 4. Подсоединить провода к винтовым клеммам (см. подраздел 5.4).
- 5. Туго затянуть гайку кабельного ввода. Уплотнительное кольцо должно полностью облегать кабель.
- 6. 6. Установить крышку на коммутационную головку, завинтить.





Рисунок 5.1 – Подготовка датчика

#### 5.3 Монтаж

Габаритные и присоединительные размеры датчиков приведены в Приложениях А, Б, В.

При монтаже датчика необходимо обеспечить контакт 2/3 длины погружаемой части с измеряемой средой. При этом погружаемая часть датчика должна располагаться перпендикулярно или под острым углом в направлении движения потока измеряемой среды.

Общие рекомендации по монтажу датчика приведены на рисунках 5.2 и 5.3.



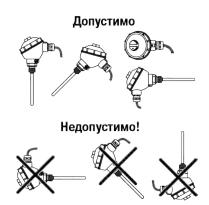



Рисунок 5.2 - Монтаж датчика на объекте

Рисунок 5.3 - Положения датчика при монтаже

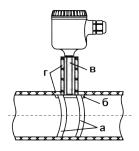



Рисунок 5.4 – Монтаж датчика ДТС325M-RS: а) хомут; б) пластина-теплообменник; в) арматура датчика; г) теплоизоляционный материал для трубопровода



#### ВНИМАНИЕ

При монтаже датчика ДТС325M-RS следует (см. рисунок 5.4):

- 1. Плотно прижать пластину (б) к трубопроводу с помощью хомута (а);
- 2. Применить теплопроводную пасту для обеспечения эффективного теплового контакта пластины (б) и трубопровода;
- 3. Укрыть арматуру датчика по всей длине теплоизоляционным материалом для трубопровода.

#### 5.4 Подключение

Для снижения влияния электромагнитных помех линию связи рекомендуется выполнять витой парой, экранированным кабелем, экранированной витой парой. Длина линии связи датчика не должна превышать 1200 м.

Диаметр кабеля (d) линии связи в зависимости от исполнения коммутационной головки:

- от 4 до 8 мм полимерный материал;
- от 8 до 10 мм металл.

Подготовка кабеля к монтажу (см. рисунок 5.5):

- 1. Разделать кабель, сняв внешнюю изоляцию на длине 35 мм.
- 2. Зачистить концы проводов на длине 5 мм.
- 3. Зачищенные концы проводов скрутить и залудить или обжать в кабельный наконечник.



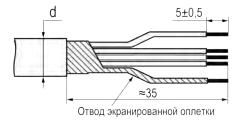



Рисунок 5.5 – Подготовка кабеля

Подключение датчика следует выполнять к винтовым клеммам встроенного НП согласно схеме подключения, приведенной на рисунке 5.6.

Экран может использоваться исключительно как защитный; в этом случае экран должен подключаться к заземлению, как показано на рисунке 5.7.



#### ОПАСНОСТЬ

При подключении источника питания требуется соблюдать полярность!

Несоблюдение полярности или подключение напряжения источника питания к контактам 3, 4, 5 приводит к выходу из строя датчика.

Не допускается подключать датчик к распределительным сетям питания постоянного тока. Рекомендуется использовать локальный источник питания.

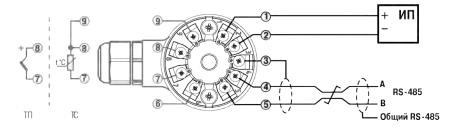



Рисунок 5.6 - Схема с подключением экрана по схеме выравнивания потенциала

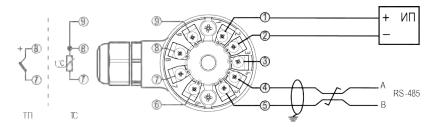



Рисунок 5.7 - Схема подключения экрана к заземлению

Провода следует монтировать между пластинами клемм (см. рисунок 5.8).

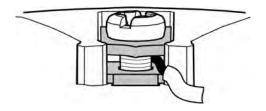



Рисунок 5.8 – Монтаж провода

Контакт 3 предназначен для выравнивания потенциалов между различными абонентами сети и может быть осуществлен двумя способами:

- посредством экрана витой пары (как показано на рисунке 5.6) при условии, что ни на одном из абонентов сети экран не будет подключен на защитное заземление;
- отдельным проводником без использования экрана кабельного соединения.

### 6 Работа датчика в сети RS-485

Датчик имеет встроенное программное обеспечение (далее – ПО), устанавливаемое в энергонезависимую память при изготовлении, выполняющее функции преобразования измеренной температуры в цифровой выходной сигнал для передачи данных по стандартному протоколу RS-485 Modbus RTU. Данное ПО не может быть модифицировано или загружено через какой-либо интерфейс.

Идентификационное наименование ПО – ПО\_embSoft\_NPC\_1\_v1.13.bin.

Датчик может работать только в режиме Slave по протоколу обмена данными Modbus RTU.

В датчике реализовано выполнение следующих функций Modbus:

- 03 (0х03): чтение из нескольких регистров хранения;
- 06 (0x06): запись значения в один регистр хранения;
- 16 (0х10): запись значений в несколько регистров хранения.

Первое подключение к датчику следует выполнить с учетом заводских сетевых настроек:

- адрес устройства: 16.
- скорость обмена, бит/с: 9600;
- количество бит данных: 8;
- контроль четности: нет;
- количество стоп-битов: 1;



#### ПРИМЕЧАНИЕ

У каждого датчика в коммуникационной сети должны быть:

- уникальный адрес, отличный от адресов прочих устройств сети;
- одинаковая скорость передачи данных.

Датчик следует настраивать с помощью Универсального конфигуратора OBEH (ссылка на скачивание – www.owen.ru). Список параметров, доступных по сети RS-485, приведен в таблице 6.1.

Таблица 6.1 – Параметры датчика, доступные по RS-485

|                                                     | Номер первого регистра |               | Количе-                |                  | _                                    | _                            |
|-----------------------------------------------------|------------------------|---------------|------------------------|------------------|--------------------------------------|------------------------------|
| Наименование<br>параметра                           | DEC                    | HEX           | ство<br>реги-<br>стров | Формат<br>данных | Допустимые<br>значения <sup>1)</sup> | Тип<br>доступа <sup>2)</sup> |
|                                                     |                        | Общие пар     | аметры                 |                  |                                      |                              |
| Название датчика                                    | 1000                   | 3E8           | 3                      | STRING<br>(6)    | DTX-RS                               | RO                           |
| Версия<br>программного<br>обеспечения,<br>STRING(6) | 1006                   | 3EE           | 3                      | STRING<br>(6)    | 1.0099.99                            | RO                           |
| Состояние датчика                                   | 1300                   | 514           | 1                      | UINT16           | см.<br>таблицу 6.2                   | RO                           |
|                                                     |                        | Управление па | араметрам              | И                |                                      |                              |
| Восстановить<br>заводские сетевые<br>настройки      | 1400                   | 578           | 1                      | UINT16           | 0/1                                  | RW                           |
|                                                     |                        | Оперативные   | параметры              | ol .             |                                      |                              |
| Значение<br>температуры, °C                         | 2200                   | 898           | 2                      | FLOAT32          | -213+1310                            | RO                           |
|                                                     | Параметры измерителя   |               |                        |                  |                                      |                              |
| Верхний предел<br>измерения, °С                     | 5302                   | 14B6          | 2                      | FLOAT32          | зависит от<br>типа сенсора           | RO                           |

#### Продолжение таблицы 6.1

|                                              | Номер первого регистра |             | Количе-                |                  | _                                                                                                | _                            |
|----------------------------------------------|------------------------|-------------|------------------------|------------------|--------------------------------------------------------------------------------------------------|------------------------------|
| Наименование<br>параметра                    | DEC                    | HEX         | ство<br>реги-<br>стров | Формат<br>данных | Допустимые<br>значения <sup>1)</sup>                                                             | Тип<br>доступа <sup>2)</sup> |
| Нижний предел<br>измерения, °С               | 5304                   | 14B8        | 2                      | FLOAT32          | зависит от<br>типа сенсора                                                                       | RO                           |
| Верхний предел регистрации, °C <sup>3)</sup> | 5306                   | 14BA        | 2                      | FLOAT32          | -213+1310                                                                                        | RW                           |
| Нижний предел регистрации, °C <sup>3)</sup>  | 5308                   | 14BC        | 2                      | FLOAT32          | -213+1310                                                                                        | RW                           |
| Постоянная<br>фильтра, с <sup>4)</sup>       | 5310                   | 14BE        | 1                      | UINT16           | 0 – фильтр<br>отключен;<br>110                                                                   | RW                           |
| Тип сенсора <sup>5)</sup>                    | 5313                   | 14C1        | 1                      | UINT16           | 0 – 50M;<br>1 – 100M;<br>2 – 100П;<br>3 – Pt 100;<br>5 – TXK (L);<br>6 – THH (N);<br>7 – TXA (K) | RO                           |
|                                              |                        | Сетевые пар | раметры <sup>5)</sup>  |                  |                                                                                                  |                              |
| Адрес устройства                             | 5602                   | 15E2        | 1                      | UINT16           | 1 <b>16</b> 247                                                                                  | RW                           |
| Скорость обмена,<br>бит/с                    | 5603                   | 15E3        | 1                      | UINT16           | 0-9600;<br>1-14400;<br>2-19200;<br>3-38400;<br>4-57600;<br>5-115200                              | RW                           |
| Количество бит данных                        | 5604                   | 15E4        | 1                      | UINT16           | 8                                                                                                | RO                           |
| Контроль четности                            | 5605                   | 15E5        | 1                      | UINT16           | <b>0</b> – нет,<br>1 – четный,<br>2 – нечетный                                                   | RW                           |
| Количество стоп-<br>битов                    | 5606                   | 15E6        | 1                      | UINT16           | <b>0</b> – 1;<br>1 – 1,5;<br>2 – 2                                                               | RW                           |

# ī

### ПРИМЕЧАНИЕ

- 1) Заводские сетевые настройки выделены полужирным курсивом.
- 2) Обозначение типа доступа: RO только чтение, RW чтение/запись.
- 3) Параметры задаются только в пределах измерения датчика и предназначены для сигнализации выхода температуры за верхнюю или нижнюю границы (при необходимости). Сигнал формируется в параметре «Состояние датчика» при выходе температуры за границы установленного диапазона.
- 4) По умолчанию экспоненциальный фильтр отключен (постоянная времени равна 0). При значительных колебания температуры может возникнуть необходимость сглаживания измерений. Для этого параметр постоянной времени нужно увеличить, наблюдая при этом за степенью уменьшения колебаний измеренного значения.
- 5) Устанавливается на заводе-изготовителе.

Таблица 6.2 – Битовая маска параметра «Состояние датчика» (регистр 1300)

| Номер бита | Ошибка / критический<br>отказ                | Возможные причины                                                                                                                           | Способ устранения                                                                                                                                                                                                                                 |
|------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | Ошибка АЦП                                   | Внутренняя ошибка<br>прибора                                                                                                                | Связаться со службой технической поддержки                                                                                                                                                                                                        |
| 1          | Ошибка датчика холодного<br>спая             | Внутренняя ошибка прибора либо выход температуры окружающего воздуха за допустимые пределы                                                  | Обеспечить условия эксплуатации датчика при температурах окружающего воздуха от –40 до +85 °C. Если температура не соответствует РЭ следует связаться со службой технической поддержки                                                            |
| 2          | Обрыв ТП                                     | Детектирован обрыв<br>входных цепей сенсора ТП                                                                                              | Провести визуальный контроль подключения сенсора к контактам 7, 8:  • при обнаружении обрыва — устранить его, осуществив подключение согласно рисункам 5.6 или 5.7  • при отсутствии видимых обрывов — связаться со службой технической поддержки |
| 3          | Выход за диапазон<br>измерения сопротивления | Сопротивление ТС выходит за диапазон измерения                                                                                              | Провести визуальный контроль подключения                                                                                                                                                                                                          |
| 4          | Выход за диапазон<br>измерения напряжения    | Напряжение ТП выходит за<br>диапазон измерения                                                                                              | сенсора к контактам 7, 8:                                                                                                                                                                                                                         |
| 5          | Выход за диапазон<br>измерения температуры   | Температура выходит за диапазон измерения                                                                                                   | Связаться со службой<br>технической поддержки                                                                                                                                                                                                     |
| 6          | Выход за диапазон регистрации температуры    | Пользователь установил слишком узкие границы регистрации  Нормальная реакция датчика на повышение измеряемой температуры (выход за уставку) | Установить границы регистрации в соответствии с системными потребностями  Нормальное функционирование датчика                                                                                                                                     |
| 7          | Ошибка встроенного ПО                        | Внутренняя ошибка прибора                                                                                                                   | Связаться со службой технической поддержки                                                                                                                                                                                                        |

### Для восстановления сетевых настроек в значение по умолчанию следует:

- 1. Отключить питание датчика.
- 2. Отключить датчик от сети RS-485.
- 3. Соединить линию A с контактом «Общий RS-485», установив перемычку между клеммами 3 и 4.
- 4. Включить питание датчика.
- 5. Выдержать не менее 5 с и отключить питание датчика.

# 7 Возможные неисправности и методы их устранения

Таблица 7.1 – Причины, виды неисправностей и способы их устранения

| Ошибка /<br>критический<br>отказ       | Возможные причины / ошибки<br>пользователя                          | Метод устранения / действия<br>пользователя                                                             |
|----------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Нет связи                              | Короткое замыкание в цепи питания на клеммах датчика                | Проверить корректность подключения                                                                      |
| с датчиком                             | Неправильное подключение интерфейса связи RS-485                    | Проверить схему подключения                                                                             |
| Нет связи<br>с датчиком.               | Не соблюдена полярность при подключении источника питания           | Проверить схему подключения.<br>При неправильном подключении датчик<br>вывести из эксплуатации          |
| Преобразователь датчика вышел из строя | Датчик подключен к распределительным сетям питания постоянного тока | Проверить правильность подключения датчика. При неправильном подключении датчик вывести из эксплуатации |

# 8 Техническое обслуживание

При выполнении работ по техническому обслуживанию датчика следует соблюдать меры безопасности, изложенные в разделе 3.

Техническое обслуживание датчика проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает следующие процедуры:

- осмотр корпуса датчика для выявления механических повреждений;
- очистку корпуса и клемм от загрязнений и посторонних предметов;
- проверку качества крепления датчика и подключения внешних связей;
- проверку сопротивления изоляции.

Обнаруженные при осмотре недостатки следует немедленно устранить.

Эксплуатация датчика с повреждениями и неисправностями ЗАПРЕЩАЕТСЯ.

### 9 Упаковка и консервация

Каждый датчик упакован в индивидуальную потребительскую тару, обеспечивающую сохранность датчика при транспортировании и хранении.

Упаковывание датчика производится в закрытых помещениях при температуре окружающего воздуха от плюс 15 до плюс 40 ° С и относительной влажности не более 80 % при отсутствии в окружающей среде пыли и агрессивных примесей.

Упакованные датчики могут помещаться в групповую транспортную тару, на которую должны быть нанесены манипуляционные знаки в соответствии с ГОСТ 14192-96.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

### 10 Транспортирование и хранение

Датчики транспортируются всеми видами транспорта, в закрытых транспортных средствах на любые расстояния, в соответствии с правилами перевозки грузов на транспорте данного вида.

Способ укладки датчиков в упаковке на транспортное средство должен исключать их перемещение.

Условия транспортирования и хранения датчиков в упаковке предприятия-изготовителя:

- температура окружающего воздуха от минус 30 до плюс 70 °C;
- относительная влажность окружающего воздуха от 5 до 95 % без конденсации влаги;
- соблюдение мер защиты от ударов и вибраций;
- минимальное атмосферное давление при транспортировании не должно быть меньше 80 кПа (эквивалентно высоте над уровнем моря 3000 м).

Допускается транспортировать датчик в контейнере, обеспечивающем его неподвижность, без упаковки по ГОСТ 21929.

Датчики должны храниться в сухих закрытых помещениях, согласно условиям хранения 1 ГОСТ 15150-69:

- воздух помещений не должен содержать пыли, а также агрессивных паров и газов, вызывающих коррозию;
- датчики должны быть размещены на стеллажах;
- расстояние между стенами, полом хранилища и стеллажами с датчиками должно быть не менее 100 мм;
- расстояние между отопительными устройствами хранилищ и стеллажами с датчиками должно быть не менее 0,5 м;
- расположение датчиков в хранилищах должно обеспечивать их свободное перемещение и доступ к ним.

# 11 Утилизация

Утилизация датчиков (переплавка, захоронение) производится в порядке, установленном Законом РФ от 24 июня 1998 года №89-ФЗ "Об отходах производства и потребления", а также другими российскими и региональными нормами, актами, правилами, распоряжениями и пр., принятыми для использования указанных законов.

### 12 Маркировка

На датчике или прикрепленному к нему ярлыке указываются:

- модель и исполнение датчика;
- обозначение НСХ ЧЭ датчика;
- класс точности (основная приведённая (к диапазону измерений) погрешность);
- заводской номер;
- диапазон измерений температуры;
- товарный знак предприятия-изготовителя;
- страна-изготовитель;
- дата выпуска датчика (месяц, год);
- знак обращения продукции на рынке Евразийского экономического союза;
- знак утверждения типа СИ.

На индивидуальную потребительскую упаковку наносятся:

- знак обращения продукции на рынке Евразийского экономического союза;
- товарный знак предприятия изготовителя;
- заводской номер (штрих-код);
- страна изготовитель и почтовый адрес предприятия изготовителя;
- наименование;
- условное обозначение датчика;
- дата упаковки.

#### 13 Комплектность

| Датчик                      | 1 шт.  |
|-----------------------------|--------|
| Паспорт и гарантийный талон | 1 экз. |
| Руководство по эксплуатации | 1 экз. |



#### ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность датчика. Полная комплектность указывается в паспорте на датчик.

# 14 Гарантийные обязательства

Предприятие-изготовитель гарантирует соответствие датчиков требованиям технических условий при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

Гарантийный срок хранения – три года со дня выпуска предприятием-изготовителем.

# Приложение A. Конструктивные исполнения ДТП-RS

ПРИМЕЧАНИЕ

Модели ДТП-RS могут выпускаться с коммутационной головкой из полимерного материала или из металла.

Таблица А.1 – Конструктивные исполнения ДТП-RS

| Модель | Внешний вид и размеры | Параметры                                | Материал защитной арматуры<br>(диапазон температур)                                                           | Длина монтажной части <i>L</i> , мм* |
|--------|-----------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 015    |                       | D = 8 мм                                 | <b>ДТПL</b> сталь 12X18H10T (–40+600 °C) <b>ДТПК</b> сталь 12X18H10T (–40+800 °C)                             |                                      |
| 025    |                       | D = 10 мм                                | <b>ДТПL</b> сталь 12X18H10T (–40+600 °C) <b>ДТПК</b> сталь 12X18H10T (–40+800 °C) сталь 10X23H18 (–40+900 °C) |                                      |
| 035    | S S                   | D = 8 мм,<br>M = 20×1,5мм,<br>S = 22 мм  | <b>ДТПL</b> сталь 12X18H10T (–40+600 °C) <b>ДТПК</b> сталь 12X18H10T (–40+800 °C)                             | от 60 до 2000                        |
| 045    | 120                   | D = 10 мм,<br>M = 20×1,5мм,<br>S = 22 мм | <b>ДТПL</b> сталь 12X18H10T (–40+600 °C) <b>ДТПК</b> сталь 12X18H10T (–40+800 °C) сталь 10X23H18 (–40+900 °C) |                                      |
| 055    | 88 S 120              | D = 10 мм,<br>M = 20×1,5мм,<br>S = 22 мм | <b>ДТПL</b> сталь 12X18H10T (–40+600 °C) <b>ДТПК</b> сталь 12X18H10T (–40+800 °C)                             |                                      |

# Продолжение таблицы А.1

| Модель | Внешний вид и размеры | Параметры                                   | Материал защитной арматуры<br>(диапазон температур)                               | Длина монтажной части <i>L</i> , мм* |
|--------|-----------------------|---------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|
| 065    | S O                   | D = 8 MM<br>M = 20 × 1,5 MM**<br>S = 27 MM  | <b>ДТПL</b> сталь 12X18H10T (–40+600 °C) <b>ДТПК</b> сталь 12X18H10T (–40+800 °C  |                                      |
| 075    |                       | D = 10 mm<br>M = 20 × 1,5 mm**<br>S = 27 mm | <b>ДТПL</b><br>сталь 12X18H10T (–40+600 °C)<br><b>ДТПК</b>                        |                                      |
| 085    |                       | D = 10 mm<br>M = 27 × 2 mm**<br>S = 32 mm   | сталь 12X18H10T (–40+800 °C)<br>сталь 10X23H18 (–40+900 °C)                       |                                      |
| 095    | S S 120               | D = 10 mm<br>M = 20 × 1,5 mm**<br>S = 22 mm | <b>ДТПL</b> сталь 12X18H10T (-40+600 °C) <b>ДТПК</b> сталь 12X18H10T (-40+800 °C) | от 60 до 2000                        |
| 105    |                       | D = 10 mm<br>M = 20 × 1,5 mm**<br>S = 27 mm | <b>ДТПL</b><br>сталь 12X18H10T (–40…+600°C)<br>- <b>ДТПК</b>                      |                                      |
| 185    |                       | D = 10 MM<br>M = 22 × 1,5 MM**<br>S = 27 MM | сталь 12X18H10T (–40+800 °C)<br>сталь 10X23H18 (–40+900 °C)                       |                                      |
| 195    | 24 80                 | D = 10 mm<br>M = 27 × 1,5 mm**<br>S = 27 mm |                                                                                   |                                      |

# Продолжение таблицы А.1

| Модель | Внешний вид и размеры                      | Параметры                                                                                             | Материал защитной арматуры<br>(диапазон температур)                                                                                                                         | Длина монтажной части <i>L</i> , мм* |
|--------|--------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 205    | OR S S S S S S S S S S S S S S S S S S S   | D = 10 MM<br>M = 22 × 1,5 MM**<br>S = 27 MM<br>R = 9,5 MM<br>D = 10 MM<br>M = 27 × 2MM**<br>S = 32 MM | <b>ДТПL</b> сталь 12X18H10T (–40+600 °C) - <b>ДТПК</b> сталь 12X18H10T (–40+800 °C) сталь 10X23H18 (–40+900 °C)                                                             |                                      |
| 265    | \$27<br>\$37<br>\$3<br>120                 | R = 12 MM  D = 6 MM  M = 22 × 1,5 MM**  S = 27 MM                                                     | <b>ДТПL</b> сталь 12X18H10T (–40+600 °C) <b>ДТПК</b> сталь 12X18H10T (–40+800 °C)                                                                                           | от 60 до 2000                        |
| 275    | KTMC                                       | D = 3 MM<br>D = 4,5 MM                                                                                | <b>ДТПL</b> сталь 12X18H10T (-40+600 °C), диаметр КТМС 3,0 мм <b>ДТПК</b> сталь AISI 321 (-40+800 °C), диаметр КТМС 3,0 мм диаметр КТМС 4,5 мм сталь AISI 310 (-40+900 °C), | 6030000                              |
| 285    | KTMC S S S S S S S S S S S S S S S S S S S | D = 3 MM<br>D = 4,5 MM,<br>M = 20×1,5 MM**,<br>S = 22 MM                                              | диаметр КТМС 4,5 мм сталь AISI 316 (–40+900 °C), диаметр КТМС 4,5 мм диаметр КТМС 3,0 мм <b>ДТПN</b> сплав Nicrobell D (–40+1250 °C), диаметр КТМС 4,5 мм                   | кратно 10                            |

### Продолжение таблицы А.1

| Модель | Внешний вид и размеры                      | Параметры                                                | Материал защитной арматуры (диапазон температур)                                                                                                                                                            | Длина монтажной части <i>L</i> , мм* |
|--------|--------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 295    | KTMC 8 6 120                               | D = 3 MM<br>D = 4,5 MM,<br>M = 20×1,5** MM,<br>S = 22 MM | <b>ДТПL</b> сталь 12X18H10T (–40+600 °C), диаметр КТМС 3,0 мм <b>ДТПК</b> сталь AISI 321 (–40+800 °C), диаметр КТМС 3,0 мм диаметр КТМС 4,5 мм                                                              | 6030000                              |
| 365    | KTMC S S S S S S S S S S S S S S S S S S S | D = 3 mm<br>D = 4,5 mm,<br>M = 20×1,5** mm,<br>S = 22 mm | сталь AISI 310 (–40+900 °C),<br>диаметр КТМС 4,5 мм<br>сталь AISI 316 (–40+900 °C),<br>диаметр КТМС 4,5 мм<br>диаметр КТМС 3,0 мм<br><b>ДТПN</b><br>сплав Nicrobell D (–40+1250 °C),<br>диаметр КТМС 4,5 мм | кратно 10                            |

<sup>\*</sup> Длина кабельного вывода *I* и длина монтажной части *L* выбираются во время заказа. \*\* По специальному заказу возможно изготовление датчика с трубной резьбой.

# Приложение Б. Конструктивные исполнения **ДТС-RS**

ПРИМЕЧАНИЕ Молеки пто

Модели ДТС-RS могут выпускаться с коммутационной головкой из полимерного материала или из металла.

Таблица Б.1 – Конструктивные исполнения ДТС-RS

| Модель | Внешний вид и размеры | Параметры                                | Материал защитной<br>арматуры | Длина монтажной<br>части <i>L</i> , мм* |
|--------|-----------------------|------------------------------------------|-------------------------------|-----------------------------------------|
| 015    |                       | D = 8 мм                                 |                               | от 80 до 2000                           |
| 025    |                       | D = 10 мм                                |                               |                                         |
| 515    |                       | D = 6 мм                                 |                               |                                         |
| 035    | ≥ S                   | D = 8 мм<br>M = 20×1,5мм<br>S = 22 мм    | сталь 12Х18Н10Т               |                                         |
| 045    |                       | D = 10 мм<br>M = 20×1,5мм<br>S = 22 мм   |                               | от 60 до 2000                           |
| 145    |                       | D = 6 мм<br>M = 20×1,5 мм**<br>S = 22 мм |                               |                                         |
| 335    | S<br>40               | D = 8 MM<br>M = 20×1,5** MM<br>S = 22 MM |                               |                                         |

# Продолжение таблицы Б.1

| Модель | Внешний вид и размеры | Параметры                                                  | Материал защитной<br>арматуры | Длина монтажной<br>части <i>L</i> , мм* |
|--------|-----------------------|------------------------------------------------------------|-------------------------------|-----------------------------------------|
| 055    | S S 120               | D = 10 мм<br>M = 20×1,5мм<br>S = 22 мм                     | сталь 12Х18Н10Т               | от 80 до 2000                           |
| 065    |                       | D = 8 mm<br>M = 20 × 1,5 mm**<br>S = 27 mm                 |                               |                                         |
| 075    |                       | D = 10 мм<br>M = 20 × 1,5 мм**<br>S = 27 мм                |                               |                                         |
| 085    |                       | D = 10 мм<br>M = 27 × 2 мм**<br>S = 32 мм                  |                               |                                         |
| 095    | 7 max 120             | D = 10 MM<br>M = 20 × 1,5 MM**<br>S = 22 MM                |                               |                                         |
| 105    |                       | D = 8 мм для модели 105<br>M = 20 × 1,5 мм**<br>S = 27 мм  |                               |                                         |
| 505    |                       | D = 6 мм для модели 505<br>M = 20 × 1,5 мм***<br>S = 27 мм |                               | от 60 до 2000                           |

# Продолжение таблицы Б.1

| Модель | Внешний вид и размеры              | Параметры                                                                | Материал защитной<br>арматуры | Длина монтажной<br>части <i>L</i> , мм* |
|--------|------------------------------------|--------------------------------------------------------------------------|-------------------------------|-----------------------------------------|
| 325    | Ø 90100                            | Датчик накладной на трубопровод диаметром от 80 до 100 мм                | сталь 12Х18Н10Т               | 50, 80, 100, 120                        |
| 405    | 66<br>47<br>0 0 0 0 1 12<br>4 0TB. | D = 5 мм                                                                 |                               | от 80 до 320                            |
| 305    | L+120  C 33.6                      | D = 6 мм<br>AISI316<br>A=50,5 мм (DN25, DN32,<br>DN40)<br>A=64 мм (DN50) |                               | от 40 до 630                            |

<sup>\*</sup> Длина монтажной части **L** выбирается при заказе.

\*\* По специальному заказу возможно изготовление датчика с трубной резьбой.

\*\*\* По специальному заказу возможно изготовление датчика с другой резьбой.

Таблица Б.2 – Конструктивные исполнения ДТС-RS для измерения температуры воздуха

| Модель                                                  | Внешний вид и размеры | Параметры | Материал защитной<br>арматуры | Длина монтажной<br>части <i>L</i> , мм* |
|---------------------------------------------------------|-----------------------|-----------|-------------------------------|-----------------------------------------|
| 125                                                     | 91                    | D = 6 мм  | сталь 12Х18Н10Т               | 60, 80, 100                             |
| * Длина монтажной части <i>L</i> выбирается при заказе. |                       |           |                               |                                         |

# Приложение В. Конструктивные исполнения коммутационных головок

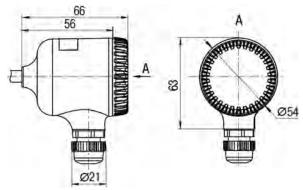



Рисунок В.1 – Габаритные размеры коммутационной головки из полимерного материала

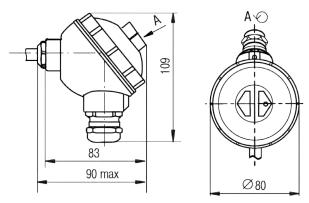



Рисунок В.2 – Габаритные размеры металлической коммутационной головки

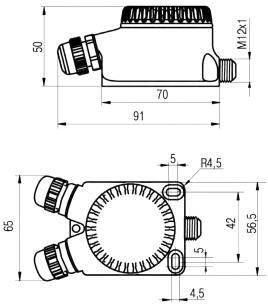



Рисунок В.3 – Габаритные размеры коммутационной головки для датчика ДТС125M-RS

ПРИМЕЧАНИЕ
В коммутационной головке для ДТС125M-RS резьба М12×1 предназначена для крепления защитного экрана.

ПРИМЕЧАНИЕ
Вид защитной арматуры ЧЭ зависит от конструктивного исполнения датчика.

ЗАКАЗАТЬ